Android OpenGL ES 实现 3D 阿凡达效果
3D 效果的壁纸
本文实现的效果
偶然间,看到技术交流群里的一位同学在做类似于上图所示的 3D 效果壁纸,乍一看效果确实挺惊艳的。当时看到素材之后,马上就萌生了一个想法:利用 OpenGL 做一个能与之媲美的 3D 效果。
拿到素材之后,就开始撸代码,想着就是简单的图像绘制加上矩阵变换嘛,花半个小时搞定它,谁曾想故事远没那么简单。另外,这里特别感谢交流群里的 @1234 同学,提供了本文所需的素材。
1
3D 效果实现原理
毫无疑问,这种 3D 效果选择使用 OpenGL 实现是再合适不过了,当然 Vulkan 也挺香的。通过观察上图 3D 壁纸的效果,罗列一下我们可能要用到的技术点:
绘制原理图
基于 3D 壁纸的效果画出以上原理图,每一次渲染包含 3 次小的绘制,即分别绘制背景层、人像层和外层。
手机晃动时,通过 Java 层 API 获取重力传感器数据(不是加速度传感器),控制 3 张图像在平面四个方向的偏移,从背景层到外层偏移程度依次增大,从而给人一种 3D 的层次感。
Android 设备重力传感器数据的获取方法:
- @Override
- protected void onResume() {
- super.onResume();
- mSensorManager.registerListener(this,
- mSensorManager.getDefaultSensor(Sensor.TYPE_GRAVITY),
- SensorManager.SENSOR_DELAY_FASTEST);
- }
-
- @Override
- protected void onPause() {
- super.onPause();
- mSensorManager.unregisterListener(this);
- }
-
- @Override
- public void onSensorChanged(SensorEvent event) {
- switch (event.sensor.getType()) {
- case Sensor.TYPE_GRAVITY:
- Log.d(TAG, "onSensorChanged() called with TYPE_GRAVITY: [x,y,z] = [" + event.values[0] + ", " + event.values[1] + ", " + event.values[2] + "]");
- if(mSampleSelectedIndex + SAMPLE_TYPE == SAMPLE_TYPE_KEY_AVATAR)
- {
- mGLRender.setGravityXY(event.values[0], event.values[1]);
- }
- break;
- }
-
- }
另外,通过观察效果图还发现,3 张图像还有周期性的缩放,并且背景层、外层和人像层的缩放程度大小相反,这种做法也是为了强化 3D 效果。
使用 Native 层的变换矩阵,用于控制图像位移和缩放。
- /**
- *
- * @param mvpMatrix
- * @param angleX 绕X轴旋转度数
- * @param angleY 绕Y轴旋转度数
- * @param transX 沿X轴位移大小
- * @param transY 沿Y轴位移大小
- * @param ratio 宽高比
- */
- void AvatarSample::UpdateMVPMatrix(glm::mat4 &mvpMatrix, int angleX, int angleY, float transX, float transY, float ratio)
- {
- LOGCATE("AvatarSample::UpdateMVPMatrix angleX = %d, angleY = %d, ratio = %f", angleX, angleY, ratio);
- angleX = angleX % 360;
- angleY = angleY % 360;
-
- //转化为弧度角
- float radiansX = static_cast<float>(MATH_PI / 180.0f * angleX);
- float radiansY = static_cast<float>(MATH_PI / 180.0f * angleY);
-
-
- // Projection matrix
- glm::mat4 Projection = glm::ortho(-1.0f, 1.0f, -1.0f, 1.0f, 0.1f, 100.0f);
- //glm::mat4 Projection = glm::frustum(-ratio, ratio, -1.0f, 1.0f, 4.0f, 100.0f);
- //glm::mat4 Projection = glm::perspective(45.0f,ratio, 0.1f,100.f);
-
- // View matrix
- glm::mat4 View = glm::lookAt(
- glm::vec3(0, 0, 4), // Camera is at (0,0,1), in World Space
- glm::vec3(0, 0, 0), // and looks at the origin
- glm::vec3(0, 1, 0) // Head is up (set to 0,-1,0 to look upside-down)
- );
-
- // Model matrix
- glm::mat4 Model = glm::mat4(1.0f);
- Model = glm::scale(Model, glm::vec3(m_ScaleX, m_ScaleY, 1.0f));//m_ScaleX, m_ScaleY 用于控制 x,y 方向上的缩放
- Model = glm::rotate(Model, radiansX, glm::vec3(1.0f, 0.0f, 0.0f));
- Model = glm::rotate(Model, radiansY, glm::vec3(0.0f, 1.0f, 0.0f));
- Model = glm::translate(Model, glm::vec3(transX, transY, 0.0f));
-
- mvpMatrix = Projection * View * Model;
-
- }
素材图里的人像层和外层是部分区域透明的 PNG 图,而背景层是每个像素透明度均为最大值的 JPG 图。
所以,在绘制 3 张图时,要先绘制背景层,然后依次是人像层、外层,为了防止遮挡,在绘制人像层、外层时需要利用片段着色器来丢弃透明度比较低的片元,这种操作俗称 alpha 测试。
用于 Alpha 测试的着色器脚本。
- //顶点着色器
- #version 300 es
- layout(location = 0) in vec4 a_position;
- layout(location = 1) in vec2 a_texCoord;
- uniform mat4 u_MVPMatrix;
- out vec2 v_texCoord;
- void main()
- {
- gl_Position = u_MVPMatrix * a_position;
- v_texCoord = a_texCoord;
- }
-
- //片段着色器
- #version 300 es
- precision highp float;
- in vec2 v_texCoord;
- layout(location = 0) out vec4 outColor;
- uniform sampler2D s_TextureMap;
- void main()
- {
- outColor = texture(s_TextureMap, v_texCoord);
- if (outColor.a < 0.6) discard;//丢弃透明度比较低的片元
- }
2
3D 效果实现
基于上节原理和知识点准备,我们使用下面的代码绘制 3D 效果。
- void AvatarSample::Draw(int screenW, int screenH)
- {
- LOGCATE("AvatarSample::Draw()");
- if(m_ProgramObj == GL_NONE) return;
- float dScaleLevel = m_FrameIndex % 200 * 1.0f / 1000 + 0.0001f;
- float scaleLevel = 1.0;
-
- glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
- glClear(GL_STENCIL_BUFFER_BIT | GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
-
- // Use the program object
- glUseProgram(m_ProgramObj);
- glBindVertexArray(m_VaoId);
-
-
- //1. 背景层的绘制
- glActiveTexture(GL_TEXTURE0);
- glBindTexture(GL_TEXTURE_2D, m_TextureIds[0]);
- glUniform1i(m_SamplerLoc, 0);
-
- //缩放控制
- scaleLevel = static_cast<float>(1.0f + dScaleLevel * pow(-1, m_FrameIndex / 200));
- scaleLevel = scaleLevel < 1.0 ? scaleLevel + 0.2f : scaleLevel;
- m_ScaleY = m_ScaleX = scaleLevel + 0.4f;
-
- //设置变换矩阵 m_TransX m_TransY 为 x,y 方向的重力传感器数据
- UpdateMVPMatrix(m_MVPMatrix, m_AngleX, m_AngleY, m_TransX / 2, m_TransY / 2, (float)screenW / screenH);
- glUniformMatrix4fv(m_MVPMatLoc, 1, GL_FALSE, &m_MVPMatrix[0][0]);
-
- //绘制
- glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, (const void *)0);
-
-
- //2. 人像层的绘制
- glActiveTexture(GL_TEXTURE1);
- glBindTexture(GL_TEXTURE_2D, m_TextureIds[1]);
- glUniform1i(m_SamplerLoc, 1);
-
- //缩放控制 pow(-1, m_FrameIndex / 200 + 1) 控制人像层的缩放大小跟背景层和外层相反
- scaleLevel = static_cast<float>(1.0f + dScaleLevel * pow(-1, m_FrameIndex / 200 + 1));
- scaleLevel = scaleLevel < 1.0 ? scaleLevel + 0.2f : scaleLevel;
- m_ScaleY = m_ScaleX = scaleLevel + 0.4f;
-
- UpdateMVPMatrix(m_MVPMatrix, m_AngleX, m_AngleY, m_TransX * 1.2f, m_TransY * 1.2f, (float)screenW / screenH);
- glUniformMatrix4fv(m_MVPMatLoc, 1, GL_FALSE, &m_MVPMatrix[0][0]);
- glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, (const void *)0);
-
-
- //3. 外层的绘制
- glActiveTexture(GL_TEXTURE2);
- glBindTexture(GL_TEXTURE_2D, m_TextureIds[2]);
- glUniform1i(m_SamplerLoc, 2);
-
- scaleLevel = static_cast<float>(1.0f + dScaleLevel * pow(-1, m_FrameIndex / 200));
- scaleLevel = scaleLevel < 1.0 ? scaleLevel + 0.2f : scaleLevel;
- m_ScaleY = m_ScaleX = scaleLevel + 0.8f;
-
- UpdateMVPMatrix(m_MVPMatrix, m_AngleX, m_AngleY, m_TransX * 2.5f, m_TransY * 2.5f, (float)screenW / screenH);
- glUniformMatrix4fv(m_MVPMatLoc, 1, GL_FALSE, &m_MVPMatrix[0][0]);
- glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, (const void *)0);
-
-
- m_FrameIndex ++;
-
- }
绘制效果如下图所示,我们期望的缩放和位移基本上实现了。
但是仔细对比原效果图,很容易发现一些问题:最外层的白斑缺少一种模糊的过度,并且白点的亮度也不够。
初版效果图
说到模糊效果,之前在介绍相机滤镜那篇文章里说过一种最简单的叠加偏移模糊,我们可以在绘制外层图像时,使用这种模糊效果。
另外,参考效果图后,为了使白斑变的更大更亮,我们还需要用到混合和光照。
绘制外层图像的片段着色器如下,着色器中,我们通过放宽 alpha 值过滤范围,使白斑变的更大,同时将输出颜色叠加一定的强度值,使白斑变的更亮。
- //绘制外层图像的片段着色器
- #version 300 es
- precision highp float;
- layout(location = 0) out vec4 outColor;
- in vec2 v_texCoord;
- uniform sampler2D s_TextureMap;
- void main() {
- vec4 sample0, sample1, sample2, sample3;
- float blurStep = 0.2;
- float step = blurStep / 100.0;
- sample0 = texture(s_TextureMap, vec2(v_texCoord.x - step, v_texCoord.y - step));
- sample1 = texture(s_TextureMap, vec2(v_texCoord.x + step, v_texCoord.y + step));
- sample2 = texture(s_TextureMap, vec2(v_texCoord.x + step, v_texCoord.y - step));
- sample3 = texture(s_TextureMap, vec2(v_texCoord.x - step, v_texCoord.y + step));
- outColor = (sample0 + sample1 + sample2 + sample3) / 4.0;
- if (outColor.a > 0.03) //放宽 alpha 值过滤范围,使白斑变的更大
- {
- outColor += vec4(0.1, 0.1, 0.1, 0.0); //叠加一些强度,使白斑变的更亮
- }
- else
- {
- discard;
- }
- }
修改外层图像的绘制逻辑,添加混合。
- //开启混合
- glEnable(GL_BLEND);
- glBlendFunc(GL_SRC_COLOR, GL_ONE_MINUS_SRC_ALPHA);
-
- //使用新的着色器程序
- glUseProgram(m_BlurProgramObj);
-
- glActiveTexture(GL_TEXTURE0);
- glBindTexture(GL_TEXTURE_2D, m_TextureIds[2]);
- GLUtils::setFloat(m_BlurProgramObj, "s_TextureMap", 0);
-
- scaleLevel = static_cast<float>(1.0f + dScaleLevel * pow(-1, m_FrameIndex / 200));
- scaleLevel = scaleLevel < 1.0 ? scaleLevel + 0.2f : scaleLevel;
- m_ScaleY = m_ScaleX = scaleLevel + 0.8f;
-
- UpdateMVPMatrix(m_MVPMatrix, m_AngleX, m_AngleY, m_TransX * 2.5f, m_TransY * 2.5f, (float)screenW / screenH);
- GLUtils::setMat4(m_BlurProgramObj, "u_MVPMatrix", m_MVPMatrix);
- glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, (const void *)0);
-
- //关闭混合
- glDisable(GL_BLEND);
添加模糊和混合之后的绘制结果如下,看着效果符合预期,顿时有那么一点点成就感。
第二版效果图
正当我以为故事圆满结束的时候,旁边的小伙伴不屑地看了看我做的效果,并对比了下原效果图,然后一脸坏笑的说:“你看,人家做的背景还有形变啊!”,我心里顿时一句“卧槽”。
然后我仔细观察了下原效果图的背景形变,想起来之前在介绍 EGL 那篇文章里做过一种简单的正余弦形变,形变效果如下图所示。
旋转形变
做背景形变用到的片段着色器,需要传入图像分辨率、控制形变的标志位以及旋转角度,其中旋转角度需要与重力传感器数据绑定,实现晃动手机出现相关的动态背景形变。
- //片段着色器
- #version 300 es
- precision highp float;
- in vec2 v_texCoord;
- layout(location = 0) out vec4 outColor;
- uniform sampler2D s_TextureMap;
- uniform vec2 u_texSize;//图像分辨率
- uniform float u_needRotate;//判断是否需要做形变
- uniform float u_rotateAngle;//通过旋转角度控制形变的程度
-
- vec2 rotate(float radius, float angle, vec2 texSize, vec2 texCoord)
- {
- vec2 newTexCoord = texCoord;
- vec2 center = vec2(texSize.x / 2.0, texSize.y / 2.0);
- vec2 tc = texCoord * texSize;
- tc -= center;
- float dist = length(tc);
- if (dist < radius) {
- float percent = (radius - dist) / radius;
- float theta = percent * percent * angle * 8.0;
- float s = sin(theta);
- float c = cos(theta);
- tc = vec2(dot(tc, vec2(c, -s)), dot(tc, vec2(s, c)));
- tc += center;
-
- newTexCoord = tc / texSize;
- }
- return newTexCoord;
- }
- void main()
- {
- vec2 texCoord = v_texCoord;
-
- if(u_needRotate > 0.0)
- {
- texCoord = rotate(0.5, u_rotateAngle, u_texSize, v_texCoord);
- }
-
- outColor = texture(s_TextureMap, texCoord);
- if (outColor.a < 0.6) discard;
- }
基于以上的着色器,我们单独绘制背景图,令形变的旋转角度与重力传感器数据绑定,效果如下图所示。
背景形变图
综合了以上场景,我们最终的绘制逻辑如下:
- void AvatarSample::Draw(int screenW, int screenH)
- {
- LOGCATE("AvatarSample::Draw()");
-
- if(m_ProgramObj == GL_NONE) return;
- float dScaleLevel = m_FrameIndex % 200 * 1.0f / 1000 + 0.0001f;
- float scaleLevel = 1.0;
-
- glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
- glClear(GL_STENCIL_BUFFER_BIT | GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
-
- glUseProgram(m_ProgramObj);
- glBindVertexArray(m_VaoId);
-
- //1. 背景层的绘制
- glActiveTexture(GL_TEXTURE0);
- glBindTexture(GL_TEXTURE_2D, m_TextureIds[0]);
- glUniform1i(m_SamplerLoc, 0);
- scaleLevel = static_cast<float>(1.0f + dScaleLevel * pow(-1, m_FrameIndex / 200));
- scaleLevel = scaleLevel < 1.0 ? scaleLevel + 0.2f : scaleLevel;
- m_ScaleY = m_ScaleX = scaleLevel + 0.4f;
- GLUtils::setVec2(m_ProgramObj, "u_texSize", glm::vec2(m_RenderImages[0].width, m_RenderImages[0].height));
- GLUtils::setFloat(m_ProgramObj, "u_needRotate", 1.0f); // u_needRotate == 1 开启形变
- GLUtils::setFloat(m_ProgramObj, "u_rotateAngle", m_TransX * 1.5f);
- UpdateMVPMatrix(m_MVPMatrix, m_AngleX, m_AngleY, m_TransX / 2, m_TransY / 2, (float)screenW / screenH);
- glUniformMatrix4fv(m_MVPMatLoc, 1, GL_FALSE, &m_MVPMatrix[0][0]);
- glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, (const void *)0);
-
- //2. 人像层的绘制
- glActiveTexture(GL_TEXTURE1);
- glBindTexture(GL_TEXTURE_2D, m_TextureIds[1]);
- glUniform1i(m_SamplerLoc, 1);
- scaleLevel = static_cast<float>(1.0f + dScaleLevel * pow(-1, m_FrameIndex / 200 + 1));
- scaleLevel = scaleLevel < 1.0 ? scaleLevel + 0.2f : scaleLevel;
- m_ScaleY = m_ScaleX = scaleLevel + 0.4f;
- LOGCATE("AvatarSample::Draw() scaleLevel=%f", scaleLevel);
- UpdateMVPMatrix(m_MVPMatrix, m_AngleX, m_AngleY, m_TransX * 1.2f, m_TransY * 1.2f, (float)screenW / screenH);
- GLUtils::setVec2(m_ProgramObj, "u_texSize", glm::vec2(m_RenderImages[0].width, m_RenderImages[0].height));
- GLUtils::setFloat(m_ProgramObj, "u_needRotate", 0.0f);// u_needRotate == 0 关闭形变
- GLUtils::setFloat(m_ProgramObj, "u_rotateAngle", m_TransX / 20);
- glUniformMatrix4fv(m_MVPMatLoc, 1, GL_FALSE, &m_MVPMatrix[0][0]);
- glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, (const void *)0);
-
- //3. 外层的绘制
- glEnable(GL_BLEND);
- glBlendFunc(GL_SRC_COLOR, GL_ONE_MINUS_SRC_ALPHA);
- //切换另外一个着色器程序
- glUseProgram(m_BlurProgramObj);
- glActiveTexture(GL_TEXTURE0);
- glBindTexture(GL_TEXTURE_2D, m_TextureIds[2]);
- GLUtils::setFloat(m_BlurProgramObj, "s_TextureMap", 0);
- scaleLevel = static_cast<float>(1.0f + dScaleLevel * pow(-1, m_FrameIndex / 200));
- scaleLevel = scaleLevel < 1.0 ? scaleLevel + 0.2f : scaleLevel;
- m_ScaleY = m_ScaleX = scaleLevel + 0.8f;
- UpdateMVPMatrix(m_MVPMatrix, m_AngleX, m_AngleY, m_TransX * 2.5f, m_TransY * 2.5f, (float)screenW / screenH);
- GLUtils::setMat4(m_BlurProgramObj, "u_MVPMatrix", m_MVPMatrix);
- glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, (const void *)0);
-
- glDisable(GL_BLEND);
- m_FrameIndex ++;
-
- }
最终的 3D 阿凡达效果如下图所示。
手机晃动状态下的效果
手机静止状态下的效果
实现代码路径见阅读原文末。